
US NDC Modernization
USNDC2014-xxxx
Unclassified Unlimited Release
December 2014

US NDC Modernization Iteration E2
Prototyping Report: User Interface
Framework

Version 1.1

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

SAND2014-20572R

USNDC2014-xxxx Page 2 of 36

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

USNDC2014-xxxx Page 3 of 36

USNDC2014-xxxx
December	2014

US NDC Modernization Iteration E2 Prototyping Report:

User Interface Framework

Jennifer	E.	Lewis
Melanie	A.	Palmer
James	W.	Vickers
Ellen	M.	Voegtli

Version	1.11
Sandia	National	Laboratories

P.O.	Box	5800
Albuquerque,	New	Mexico		87185

ABSTRACT

During	the	second	iteration	of	the	US	NDC	Modernization	Elaboration	phase	
(E2),	the	SNL	US	NDC	Modernization	project	team	completed	follow-on	Rich	
Client	Platform	(RCP)	exploratory	prototyping	related	to	the	User	Interface	
Framework	(UIF).	The	team	also	developed	a	survey	of	browser-based	User	
Interface	solutions	and	completed	exploratory	prototyping	for	selected	
solutions.	This	report	presents	the	results	of	the	browser-based	UI	survey,	
summarizes	the	E2	browser-based	UI	and	RCP	prototyping	work,	and	outlines	a	
path	forward	for	the	third	iteration	of	the	Elaboration	phase	(E3).

DECEMBER 2014

USNDC2014-xxxx Page 4 of 36

REVISIONS

Version Date Author/Team Revision Description Authorized by

1.0 9/19/2014 US	NDC	Modernization	Team Initial	Release M.	Harris

1.1 12/19/2014 IDC	Reengineering	Team IDC	Release M.	Harris

DECEMBER 2014

USNDC2014-xxxx Page 5 of 36

TABLE OF CONTENTS

US NDC Modernization Iteration E2 Prototyping Report: User Interface
Framework .. 3

Abstract ... 3

Revisions ... 4

Table of Contents .. 5

1. Overview ... 8

1.1. UIF Definition..8

2. E1 Background .. 8

3. E2 Prototyping... 9

3.1. Browser based UI ..9

3.1.1. Plotting packages – waveform display..10

3.1.1.1. Prototyping ...10

3.1.1.1.1. Highcharts: Highstock ...10

3.1.1.1.2. Data-Driven Documents (D3) ..11

3.1.2. Frameworks...11

3.1.2.1. Prototyping ...12

3.1.2.1.1. Ozone Widget Framework ..13

3.1.2.1.1.1. Dashboard...14

3.1.2.1.1.2. Communication between widgets ...14

3.1.2.1.1.3. Administration ..15

3.1.2.1.1.4. Prototype..15

3.1.2.1.1.5. Evaluation ...16

3.1.2.1.2. SproutCore ...16

3.1.2.1.2.1. Desktop Customization ...17

3.1.2.1.2.2. Data Binding / Communication..17

DECEMBER 2014

USNDC2014-xxxx Page 6 of 36

3.1.2.1.2.3. Data Management ..18

3.1.2.1.2.4. Administration ..19

3.1.2.1.2.5. Prototype..19

3.1.2.1.2.6. Evaluation ...20

3.2. Eclipse 4 RCP...20

3.2.1. Key Concepts ...21

3.2.1.1. Dependency injection..21

3.2.1.2. Dependency re-injection ...21

3.2.1.3. Eclipse context ..22

3.2.1.4. Application Model ...22

3.2.2. SWT / JFace toolkit ..23

3.2.3. JavaFX / JavaFX 2.0 integration ..24

3.2.4. Prototype...25

3.2.4.1. Communication...26

3.2.4.2. User Preferences ...26

3.2.5. Evaluation..27

4. Conclusions ... 27

5. Path Forward... 28

6. Works Cited... 29

7. Appendix A. Survey of Plotting Packages for Waveform Display 30

8. Appendix B. Survey of Browser Based UI Frameworks................................. 32

DECEMBER 2014

USNDC2014-xxxx Page 7 of 36

This	page	intentionally	left	blank.

DECEMBER 2014

USNDC2014-xxxx Page 8 of 36

1. OVERVIEW

The	US	NDC	Modernization	project	statement	of	work	identifies	the	definition	of	
a	modernized	US	NDC	system	architecture	as	a	key	project	deliverable.	As	part	of	
the	architecture	definition	activity,	the	Sandia	National	Laboratories	(SNL)	
project	team	has	established	an	ongoing,	software	prototyping	effort	to	support	
architecture	trades	and	analyses,	as	well	as	selection	of	core	software	
technologies.

During	the	second	iteration	of	the	Elaboration	phase	(E2),	spanning	Q3	– Q4	
FY2014,	the	prototyping	team	developed	additional	COTS	surveys	and	
exploratory	prototypes,	building	on	E1	prototyping	work	related	to	the	User	
Interface	Framework	(UIF). This	report	summarizes	the	iteration	E2	prototyping	
work	and	discusses	the	path	forward	in	E3.

1.1. UIF Definition

The	User	Interface	Framework	(UIF)	is	a	software	mechanism	providing	a	
standard	architecture and	a	set	of	application	programming	interfaces	(APIs).	
The	goals	are	to	provide	a	single	unified	UIF	to	be	used	for	all	internal	system
displays;	support	a	consistent, modern	user	interface	standard	for	all	system
graphical	user	interface display	elements;	support	a	responsive	and	
customizable	user	interface;	and	provide	a	modular,	component-based	
architecture	for	development,	integration,	and	deployment	of	extensible	GUI	
components.	The	constraints	within	which	the	UIF	must	operate	include	
supporting	user	interface	performance	requirements, enabling	developers	to	
build	new	UI	features	via	standard	APIs,	interfacing	with	other	frameworks	in	
the	system	(e.g.	the	Object	Storage	and	Distribution	mechanism),	use	of	Open	
Source	Software	(OSS) and	Commercial Off-The-Shelf	(COTS)	software,	and	
preference	for	solutions	based	on	open	standards.

2. E1 BACKGROUND

During	E1,	UIF	tasks	focused	on	surveying	available	OSS	and	COTS software	
solutions for	desktop	based	user	interfaces	to	determine	which	software	merited	
further	investigation	through	exploratory	prototyping.		The	survey	resulted	in	
selection	of	the	NetBeans and	Eclipse	Rich	Client	Platforms	(RCPs)	as	the	
primary	candidates	for	a	desktop	based	UIF.	The	NetBeans prototype	is	
documented	in	the	E1	UIF	prototyping	report	[1].	

This	prototyping	effort	found	that	NetBeans supports	running	on	a	variety	of	
operating	systems;	supports	integration	of	independently	developed	plugins;
and	provides	reusable	services	such	as	management	of	the	user	interface layout,	
user	settings,	storage,	plugin	framework,	and	progress	reporting.	Some	of	the	

DECEMBER 2014

USNDC2014-xxxx Page 9 of 36

features	available	to	the	sample	NetBeans RCP	application	included	the	ability	to	
customize	window	size,	window	position,	and	whether	a	window	was	docked	or	
disconnected	from	the	main	application.	In	addition,	the	user	could	modify	the	
relative	position	of	windows	by	dragging	them	to	different	snap	locations	on	the	
floating	set	of	connected	display	widgets	or	the	user	could	simply	“tear	off”	any	
given	display	widget	and	move	it	to	a	location	of	their	choice	anywhere	on	the	
screen.	The	exploratory	prototype	showed	many	of	the	UIF	goals	are	met	by	
NetBeans RCP,	including	Analyst	workspace	customization	requirements,	OSS,	
and	extensibility,	making	it	a	potential	candidate	for	the	UIF.

3. E2 PROTOTYPING

E2	prototyping	work	involved	continued	exploration	of	Rich	Client	Platforms	
(RCP)	with	exploratory	prototyping	of	the	Eclipse	RCP	and	investigating the	
feasibility	of	implementing	the	Analyst	interfaces	as a	browser	based	User	
Interface	(UI).	The	primary	goal	was	to	select	between	RCP	and	browser	based	
UIs	for	implementing	Analyst	interfaces,	and	a	secondary	goal	was	to	decide	
between	NetBeans	and	Eclipse	as	the	most	viable	RCP	solution.

3.1. Browser based UI

The	UIF prototyping	effort	devoted	some	of	E2	to	learning	more	about	the	
development	of	web	applications,	including	rich	internet	applications	(web	
pages	with	a	“desktop-like”	feel).	The	goal	of	this	effort	was	to	assess	the	
feasibility	of	incorporating	browser	based	interfaces,	as	opposed	to	native	
desktop	applications,	into	the	system architecture	prototype.	Specifically,	the	
UIF	prototyping	team	sought	to	gain	insight	into	the	following	aspects	of	
browser	based	UIs:	

 Performance	of	a	browser	based	UI	compared to	a	similar	desktop	based	
UI

 Development	level	of	difficulty

 User	experience	of	a	browser	based	UI	versus	a	desktop	based	UI

 Existing	standards	for	developing	browser	based	UIs and frameworks	
that	conform	to	those	standards

 Toolsets	that	could	be	leveraged	within	a	browser	based	UI

The	browser	based	UI	prototype aimed	to	create	web	pages	within	a	web	
application	framework.	These	web	pages include	a	waveform	display	and	a	
signal	detection	table	display.	Modifications	to	the	signal	detection	table	should	
update	the	signal	detection	information	in	the	waveform	display,	and	vice	versa.	
This	requirement	of	communication	between	displays	guided the	search	for	

DECEMBER 2014

USNDC2014-xxxx Page 10 of 36

frameworks	towards	software	that	provides	communication	between	the	
elements	managed	by	the	framework.		

3.1.1. Plotting packages – waveform display

A brief	survey	was	conducted	to	assess	available	OSS	and	COTS charting	
packages.	Waveform	packages selected	for	prototyping	needed	to	support:	

 Displaying	waveform	data	with	performance	meeting	system
requirements

 Providing	the	ability	to	zoom,	pan,	scroll

 Displaying annotations	on	waveform	data	(e.g.	signal	detection markers)

 Providing an	interface	for	manipulating	waveform	annotations	(e.g.	
adding/deleting/moving	signal	detections)

 Providing waveform	and	waveform	annotation metadata	via	tooltips	(or	
similar	mechanism)	

The	two	plotting	packages	that	best	meet	these	requirements	are	D3	and	
Highstock.	Appendix	A	contains	a	list	of	the	other	packages	included	in	the	
survey	as	well	as	the	rationale	for	why	D3	and	Highstock	were	selected	over	
other	packages.	

3.1.1.1. Prototyping

Because	Highstock	and	D3	were the	most	promising	of	the	surveyed	plotting	
packages,	these	are	the	two	the	UIF	team	incorporated	into	the	exploratory	
prototype	for	the	browser	based	UI.	

3.1.1.1.1. Highcharts: Highstock

Highstock [2] is a	Highcharts	product	that	uses	JavaScript	to	create	timeline
plots.	Highstock	can	load	large	amounts	of	data	quickly	while	still	presenting	a	
responsive	display,	including	multiple	waveforms,	to	the	user.	It	also	provides	
annotations	that	can	be	used	to	represent	signal	detections	on	waveforms.		

A	concern	that	arose	with	Highstock	is	that	it	hides	some	of	the	underlying	
functionality	in	an	attempt	to	be	easier	to	use.	This	lack	of	access	to	the	base	
features	Highstock	builds	upon	can	limit	a	developer’s	ability	to tailor	a	plot	
display	to	specific	needs	different	from	the	defaults	offered	with	Highstock.	

DECEMBER 2014

USNDC2014-xxxx Page 11 of 36

3.1.1.1.2. Data-Driven Documents (D3)

D3 is	a	JavaScript	library	that	allows	binding arbitrary	data	to	a	Document	Object	
Model	(DOM),	and	then	applying data-driven	transformations	to	the	document.
D3 minimizes code	by	abstracting	looped	calls	into	one	single	function	call	
applied	to	an	entire	set	of	data	at	once.	It	uses	HTML,	SVG	(Scalable	Vector	
Graphics),	and	CSS.	

Extensive	customization	is	possible	using	the	provided	API,	and	it	is	relatively	
easy	to	start	from	scratch,	read	in	a	set	of	data,	and	display	it	in	a	graph,	plot,	
shape,	etc.,	using	just	a	few	lines	of	D3	calls	in	JavaScript.	D3	avoids	excessive	
DOM	updating,	which	results	in	a	display	that	is	responsive	to	user	interaction.

3.1.2. Frameworks

The	E1	prototyping	work	with	NetBeans demonstrated	the	benefits	of	using	an	
established	framework	for	the	management	of	independent	user	interface	
components.	For	the	browser	based	UI	work	of	E2,	the	UIF	prototyping	team	
researched	which	frameworks	for	web	application	development	exist	and	which	
frameworks	best	support	the	system user	interface	goals.	

Many	frameworks	for	developing	web-based	user	interfaces	are	available.	These	
are	the	initial	framework	categories	included	in	the	survey:

 Widget	framework:	These	frameworks	organize	web	applications	as	
widgets	in	a	single	operating	environment	(e.g.	multiple	web	pages	
displayed	inside	a	single	web	page).

 Plugin:	Plugins	extend	existing	browser	functionality.

 Toolkit:	Toolkits	provide	the	tools	developers	need	to	create	web-based	
applications,	but	lack	the	framework	needed	for	integrating	different	
components.

 Rich	Internet	Application	(RIA)	frameworks:	These	frameworks	are	for	
developing	Rich	Internet	Applications	(web	applications	with	many	of	the	
characteristics	of	desktop	application	software).

Web	Application	Framework:	These	frameworks	support	development	of	
dynamic	websites,	web	applications,	web	services,	and	web	resources	while	
alleviating	overhead	associated	with	common	web	development	activities.
Software	from	each	of	the	categories	above	was	included	in	the	initial	survey	list.	
Because	this	resulted	in	a	large	number	of	available	software	solutions,	the	
survey	focus	shifted	primarily	to	software	solutions	that	provided	support	for:	

 Customization	of	window	layout

DECEMBER 2014

USNDC2014-xxxx Page 12 of 36

 Customization	of	user	preferences

 Communication	between	UI	components

 Plugins

The	survey	also	took	into	account	industry	presence	and	was	limited	to	software	
solutions	that	have	an	active	developer	and	user	community.	

Ozone	Widget	Framework	(OWF)	was	chosen	for	prototyping	because	it	
provides	a	customizable	desktop-like	view	of	applications	within	a	browser.	
Each	widget	is	a	web	page	which	provides	developers	the	flexibility	to	develop	
using	the	appropriate	toolkit	for	the	web	page	task.	In	addition,	OWF	provides	a	
communication	channel	that	these	web	pages	can	use	to	communicate	or	share	
data.		

SproutCore	offers	a	framework	for	creating	all	of	the	web	pages	needed	for	an	
application.	Where	OWF	provides	a	container	for	managing	independently	
developed	web	pages,	SproutCore	is	tightly	integrated	into	the	web	pages	
themselves.	SproutCore	provides	its	own	web	page	development	language	
(similar	to	JavaScript)	and	enforces	a	structure	that	all	SproutCore	applications	
must	adhere	to,	including	mechanisms	for	communicating	across	web	pages	and	
writing/reading	data	to/from	a	common	data	store.	SproutCore	was	chosen	for	
prototyping	because	it	allows for	exploration	of	a	more	fully	web-based	
development	framework	(as	opposed	to	OWF	which	manages	applications	
developed	independently	of	OWF	itself).		

Appendix	B	contains	a	list	of	the	packages	included	in	the	survey	as	well	as	the	
rationale	for	why	OWF	and	SproutCore	were	selected	over	other	packages.	

3.1.2.1. Prototyping

The	goal	of	both	the	Ozone	Widget	Framework	and	SproutCore	prototyping	was	
to	learn	more	about	these	frameworks	specifically	and	development	of	desktop-
like	web	applications	in	general.	The	resulting	applications	for	both	OWF	and	
SproutCore	aimed	to	demonstrate	the	customizability	of	the	widgets	managed	
by	the	framework,	including	widgets	/	web	pages	plotting	waveform	data	and	
viewing	a	table	of	signal	detections	associated	with	those	waveforms.	

The	prototyping	activities	need	to	support	the	following	features:

 Display	of	many	waveforms	simultaneously	with	little	to	no	noticeable	lag
in	performance	when	zooming,	panning,	or	otherwise	manipulating	the	
data	display	

 Annotations	of	waveforms	for	indicating	signal	detections

DECEMBER 2014

USNDC2014-xxxx Page 13 of 36

 Demonstrate	data	and	display	synchronization	using	communication	
between	the	signal	detection	table	and the	waveform	display,	including	
dynamic	updates	to	the	annotations	on	the	waveforms	based	on	changes	
to	the	signal	detection	table

 Sorting	capability

3.1.2.1.1. Ozone Widget Framework

The	Ozone	Widget	Framework	(OWF)	is	“a	customizable	open-source	web	
application	that	assembles the	tools	you	need	to	accomplish	any	task	and	
enables	those	tools	to	communicate	with	each	other” [3]. OWF	manages	UI	
components	through	widgets.	Each	widget	is	a	web	page,	and	permissions	for	
those	widgets	can	be	set	on	a	user or	group	level.	

The	widgets	can	be	placed	in	whatever	configuration	the	user	wishes,	similar	to	
positioning	application	windows	on	a	desktop,	by	adding from	a	list	of	installed	
widgets.	

Figure 1 – OWF: Launch menu, selecting a widget

The	OWF	API	is	fairly	limited	and	includes	communication	between	widgets,	
designing	the type	of window	used	to	display	a widget,	enabling	drag	and	drop	
between	widgets,	creating	a	log,	etc.	All	of	these	commands	interact	with	the	
OWF	framework	through	JavaScript	methods.	Because	JavaScript	is	ubiquitous	
within	web	application	development,	OWF	JavaScript	calls	can	be	embedded	into	
widgets	built	in	a	variety	of	languages	(e.g.	HTML,	JavaScript,	Java	Applets,	.Net,	
Silverlight,	Google	Web	Toolkit,	etc.)

DECEMBER 2014

USNDC2014-xxxx Page 14 of 36

Because	OWF	provides	only	the	framework	for	managing	independent	web	
pages as	widgets,	the	pages	within	the	widgets	can	be	used	and	tested	in	a	
standalone context	(without	OWF)	as	well.

3.1.2.1.1.1. Dashboard

Customized dashboards	(desktop	views) can	be	created	that	contain	a	default	set	
of	widgets	and	define the	initial	layout	of	those	widgets.	Permissions	for	these
dashboards can	be	set	on	a	user	or	group	level. Dashboard layouts	can	be	
customized	to	have	different	zones	that	define	window	behavior	for	that	zone	
(e.g.	tabbed	window	versus	accordion	view	for	a	given	zone)	and	can	be	created	
using	a	drag	and	drop	interface	through	OWF’s	dashboard creator.	

Figure 2 – OWF: Creating a custom dashboard

3.1.2.1.1.2. Communication between widgets

OWF	provides	a	mechanism	for	widgets	to	communicate.	The	provided	interface	
resembles	socket	communication,	but	OWF	manages	the	intricacies	of	opening,	
closing,	and	managing	the	sockets	and	provides	developers	with	abstract	
methods	of	sending	and	receiving	data.	

// Global function that sends data from the waveform widget to
// the table widget
shout = owfdojo.hitch (this, function() {

var channel = ‘FromWaveform’;
OWF.Eventing.publish(channel, Waveform);

});

// Connect to receive using an OWF Socket Channel
OWF.Eventing.subscribe(‘FromWaveform’,

yowfdojo.hitch(this, this.addToGrid));

Figure 3 – OWF: Communication example

DECEMBER 2014

USNDC2014-xxxx Page 15 of 36

3.1.2.1.1.3. Administration

Administrators	can	manage	users,	user	groups,	and	permissions	for	widgets	and
dashboards.	In	addition,	administrators	can	design	and	create	custom	
dashboards	for	different	users	or	user	groups.	

Figure 4 – OWF: Administration panel

3.1.2.1.1.4. Prototype

OWF	prototyping	used	the	Highstock plotting	package	and	created	a	widget	to	
display	waveform	data	and	a	widget	to	display	a	table	of	signal	detections.	These	
widgets	communicated	with	each	other	such	that	updates	to	the	signal	detection	
table	were	received	by	the	waveform	display	and	vice	versa.	Due	to	time	
constraints,	only	one	waveform	and	one signal	detection	table	entry	is	displayed	
in	the	final	version.	

DECEMBER 2014

USNDC2014-xxxx Page 16 of 36

Figure 5 – OWF: Prototyping widgets

3.1.2.1.1.5. Evaluation

OWF	provides	a	flexible	framework	for	managing	widgets.	Widgets	can	be	
independent	web	pages	or	they	can	interact	through	OWF’s	underlying	
communication	mechanism.	The	ability	to	customize	dashboards	by	user	or	user	
group	provides	a	lot	of	flexibility	with	how	each	user	manages	their	individual	
displays.	Should	the	system require	a	customizable	web-based	desktop	interface,	
OWF	would	be	a	solid	choice.	

3.1.2.1.2. SproutCore

SproutCore	is	“an	open-source	framework	for	building	blazingly	fast,	innovative	
user	experiences	on	the	web” [4]. Many	web	page	toolkits	that	provide	dynamic	
user	interactions	adhere	to	the	single	page	paradigm	where	all	data	is	presented	
in	one,	vertically	scrollable	page.	That	page	could	have	widgets	that	have	
behavior	independent	from	the	rest	of	the	page, and	that	are	developed	
separately,	but	the	result is	still	a	single	page.	SproutCore	offers	a	“workspace	
view”	that	can	contain	multiple	pages	that	the	user	can	arrange	as	they	wish.	For	
this	reason,	SproutCore	was	considered	a	candidate	for	further	prototyping.	

DECEMBER 2014

USNDC2014-xxxx Page 17 of 36

SproutCore	introduces	its	own	language	and	syntax	to	support	object-oriented	
programming	that	extends	JavaScript	objects.	Developers	create	a	folder	
hierarchy	conforming	to	a structure	expected	by	SproutCore.	This	hierarchy	
contains	files	responsible	for	different	functions	necessary	to	populate	the	web	
page.	At	runtime,	these	files	are	converted	into	HTML	and	rendered	to	a	web	
page.	

SproutCore	pushes	the	entire	MVC	design	pattern	into	the	browser,	with	the	
only	separate	component	being	the	data	that	is	dynamically	loaded	into	the	
model	during	application runtime.	

3.1.2.1.2.1. Desktop Customization

Desktop	customization	is	not	default	functionality	within	SproutCore.	Typical	
window	actions	for	views	within	an	application	(e.g.	minimize,	maximize,	and	
close)	are	missing;	this	made	desktop	customization	difficult	to	accomplish.

3.1.2.1.2.2. Data Binding / Communication

The	mechanism	that	SproutCore	utilizes	for	communication	within	an	
application	is	the	Key-Value	Observing	model,	or	KVO.	A	binding	connects	the	
properties	of	two	objects	so	that	whenever	the	value	of	one	property	changes,	
the	other	property	will	be	changed	also.	Binding	one	attribute	to	another	
involves	a	simple	binding	call.	

The	easiest	type	of	binding	is	one-way,	which	is	useful	for	things	like	labels.	One-
way	binding	should	be	used	when	an	object	needs	to	be	updated	based	on	
changes	to	the	object	it	is	bound	to,	but	not	vice	versa.	

label: SC.LabelView.extend({
valueBinding:

SC.Binding.oneWay(‘NdcTest.waveController.labelValue’)
}),

DECEMBER 2014

USNDC2014-xxxx Page 18 of 36

Figure 6 – SproutCore: One-way data binding example

This	binding	call updates	a	label	in	the	signal	detection	display	when	a	label	
value	changes	in	the	waveform	display.	It	accomplishes	this	by	referencing	a	
method	in	waveController called	labelValue(). When	a	change	is	made	in	the	
waveControllerwhich	requires	a	change	to	the	label	value,	a	notification	is	
generated that	updates	the	corresponding	label	in	the	signal	detection	display.	
However,	since	this	is	a	one-way	binding,	if	the	label	changes	in	the	signal	
detection	display,	it	will	not	change	in	the	waveform	display.

SproutCore	also	supports	two-way	bindings,	such	that	whenever	one side	of	the
binding changes, the	other	is	immediately	updated.	

During prototyping,	a	variation	of	KVO	two-way	binding	was	established	
between	a	text	field	in	the	signal	detection	table and	the	name	of	a	waveform in	
the	waveform	display.	In	the table,	the	editable	text	field	supported	a	one-way	
binding	to	display	the	station	name	for	a	waveform,	and	clicking	a	button	next	to	
the text	field	fired	an	action	that	would	update	the	name	of	the	station	on	the	
waveform	display	with	the new	value	entered	by	the	user	in	the	text	field.

The	SproutCore	prototype	incorporated	the	D3	plotting	package.	SproutCore’s	
KVO	could	not	be	used	to	update	the	signal	detection	table	from	the	D3	
waveform	display	because	the	D3	code	(wrapped	in	a	function	inside	a	
SproutCore	view)	is	not	SproutCore-native,	it	is	standard	JavaScript.	Therefore	
setting	the	bindings	up	the	way	they	are	above	(a	set	of	calls	unique	to	
SproutCore)	within	the	D3	logic	would	not	work,	and	the	bindings	had	to	be	
limited	to	SproutCore	elements.

3.1.2.1.2.3. Data Management

A	unique	feature	of	SproutCore	is	its	DataStore (essentially	a	local	database)	that	
allows	for	managing	object	descriptions	and	relationships	easily.	This	acts	as	a	
local-access,	in-memory	database	that	runs	each	time	the	application	is	
launched.	It	is	customizable	and	includes	such	functions	as	access to	a	server	on	
application	launch, loading	data	from	the	server	into	the	DataStore	for	quick	use	
by	the	application (including creating,	committing/storing,	modifying,	and	
deleting	data	records	in	the	DataStore	during	runtime),	and	pushing	all	of	the	
DataStore	data	back	to	the	server	at	application	close.

The	DataStore	also	supports	being	able	to	load	in	data	from	on-disk	“fixtures”,	
which	act	independently	from	the	server	and	allow	for	faster	performance.	
During	prototyping,	a	data	model	was created	for	a	waveform and	for	a	signal	
detection,	including	a	relationship	between	them.	One	waveform	could	be	
related	to	many	signal	detections,	and	one	signal	detection	could	be	related	to	a	
single	waveform;	this	is	seen	in	the	SC.Record.toMany	and	SC.Record.toOne calls	
below.

DECEMBER 2014

USNDC2014-xxxx Page 19 of 36

NdcTest.WaveRecord = SC.Record.extend({
index: SC.Record.attr(Number, {isRequired: YES}),
waveformId: SC.Record.attr(Number, {isRequired: YES}),
stationName: SC.Record.attr(String, {isRequired: YES}),
signalDetections: SC.Record.toMany(

‘NdcTest.SignalDetection’,
{isMaster: YES, inverse: ‘wave’}

),
});

Figure 7 – SproutCore: Waveform data representation

NdcTest.SignalDetection = SC.Record.extend({
timestamp: SC.Record.attr(String),
wave: SC.Record.toOne(

‘NdcTest.WaveRecord’,
{isMaster: NO}

),
});

Figure 8 – SproutCore: Signal detection data representation

3.1.2.1.2.4. Administration

SproutCore	does	not	have	a central	administration system	for	distributing	
application	updates	or	managing	user	access	to	those	applications.	SproutCore	
simply	packages	the	application	for	delivery	by	compressing	files.	After that, it	is	
up	to	the user	to	deploy	the	files	to	a	web	server.

3.1.2.1.2.5. Prototype

SproutCore	prototyping	used	the	D3	plotting	package and	created	a	waveform	
display	and	a	signal	detection	table.	These	components communicated	with	each	
other	such	that	updates	to	the	signal	detection	table	were	received	by	the	
waveform	display	and	vice	versa.	Due	to	time	constraints,	only	one	waveform	is	
displayed	in	the	final	version.	However,	during	the	process	of	exploring	the	D3	
plotting	package,	displays	containing	multiple	waveforms	were	created.	

DECEMBER 2014

USNDC2014-xxxx Page 20 of 36

Figure 9 – SproutCore: Prototyping displays

3.1.2.1.2.6. Evaluation

While	SproutCore had	some	useful	features	such	as	the	KVO	and	DataStore,	it	
was	not	quite	the	right	fit	for	the	prototyping	goals.	The	fact	that	it	does	not	
support	plug-in	widget	logic locks	application	developers	into	developing	
exclusively	in	SproutCore,	desktop	customization	is	cumbersome,	it	is	difficult	to	
use	external	JavaScript	libraries,	and	SproutCore	is	implemented	in	a	custom	
dialect	of	JavaScript.	SproutCore	is	not	a	good	fit	for	the	system’s user	interface	
goals.	

3.2. Eclipse 4 RCP

Many	of	the	user	interface	requirements	for	the	system relate	to	customization	
of	the	Analyst	display.	During	E1,	the	UIF	prototyping	team	found	that	for	
desktop	applications,	much	of	this	functionality	is	immediately	available	when	
using	a	Rich	Client	Platform	(RCP). RCPs	limit	the	amount	of	developer	time	
spent creating	and	maintaining window	management	and	user	customization	
code	because	that	functionality	is	all	provided	and	managed	by	the	RCP.	

The	Eclipse	4	RCP is	a	strong	runner	up	to the NetBeans RCP	prototyped	in	E1.	
The	JFace/SWT	widget	toolkit	used	by	Eclipse	has	extensive	market	presence	
and	developer	communities.	Eclipse	is	under	active	development.	However,	it	
does	not	have	the	extensive	support	options	and	documentation that	Eclipse	3	
has.	IBM	has	contributed	significantly	to	the	Eclipse	open	source	effort	and	
continues	to	help	drive	its	development.

The	goal	of	the	Eclipse	prototyping	was	to	compare	its	features	related	to	display	
customization,	development	environment,	performance,	and	display	
synchronization	and	communication	with	those	provided	by	NetBeans RCP.	This	

DECEMBER 2014

USNDC2014-xxxx Page 21 of 36

was	accomplished	by	creating a	workspace with	3	display	areas	including	a	
waveform	display,	a	signal	detection	table,	and	a	map.	The	waveform	display	
should	provide	an	interface	for	signal	detection	manipulation	
(adding/deleting/moving	signal	detections);	the	ability	to	zoom,	pan,	scroll;	and	
display	signal	detection	metadata	via tooltips	or	a	similar	mechanism.	The	
waveform	display	and	signal	detection	table	should	be	synchronized;	changes	to	
the	signal	detections	on	the	waveform	display	should	update	the	corresponding	
signal	detection	row	in	the	signal	detection	table	and	vice	versa.	

3.2.1. Key Concepts

3.2.1.1. Dependency injection

Dependency	injection	is a	software	design	pattern	implementing	inversion	of	
control.	In	this	paradigm,	objects	request	services	essentially	by	stating	that	they	
need	them	(e.g.	by	adding	a	framework	object	as	a parameter	to	a	constructor).	
In	Eclipse	4	RCP,	dependency	injection is	usually	the	only	way	to	access	
underlying framework	objects.	

A	benefit	of	dependency	injection	is	that	it	loosens	code	coupling by	late-binding	
dependencies	to	clients.	However,	a	common	complaint	is	that	many	errors	are	
not	found	until	runtime.	

Pros Cons
Loose	coupling	– less	risk	of	problematic	
API	change	(i.e.	static	framework	
methods)

Hard	(or	impossible)	to	know	if	client	will	
get	framework	object	injected	until	
runtime	(code	often	compiles	but	fails	at	
runtime)

Easier	testing	– clients	are Plain	Old	Java	
Objects	(POJOs),	and	their	dependencies	
can	be mocked	up for	unit	testing

Access	to	framework	objects	is	opaque	–
they	“come	from	the	sky”

Eliminates	“ugly”	chains	of	static	method
calls	to	get	framework	objects

Makes	the	API	harder	to	learn	– harder	to	
use	auto-complete	in	IDE	to	see	what’s	
available
Framework	objects	can	only	be	injected	
into	classes	that	are	directly	linked	to	the	
Eclipse	RCP	UI	element

Figure 10 – Eclipse RCP: Pros and cons of dependency injection with the Eclipse context

3.2.1.2. Dependency re-injection

The	Eclipse	framework	uses	dependency	reinjection	when	it	re-calls	methods	
that	take	dependency	injected	objects when	the	objects	have	been	changed	in	
the	context.	This	feature	can	act	as	a	form	of	a	listener	in	UI	components	for	data	
model	changes.

DECEMBER 2014

USNDC2014-xxxx Page 22 of 36

3.2.1.3. Eclipse context

The	Eclipse	context	is	a	key-value	store	that	the	framework	uses	for	dependency	
injection	purposes,	but it is	also	available	to	clients	as	a	method	of data	sharing	
between	objects.	The	context	stores	keys	as	Strings	and	the	corresponding	
values	as	an instance	of	an	object.	

Parts	(windows)	and	some	other	UI	elements	have	their	own	Eclipse	context,	but	
it	is	often	more	useful	to	the	use the	top-level	(global)	Eclipse	context.	When	a	
client	requests	an	object	via	dependency	injection,	the	framework	engine	looks	
in	the	current	objects’	Eclipse	context	and	then	up	the	hierarchy	of	contexts	until	
a	suitable	object	is	found	(or	an	exception	is	thrown	when	one	isn’t	present).	
That	top-level	context	where	the	search	for	objects	to	inject	stops	is	often	called	
the	global	context.

Figure 11 – Eclipse RCP: Dependency injection within Eclipse contexts

3.2.1.4. Application Model

The application	model	is	the structure	by	which	the	Eclipse	4	RCP	knows	how	to	
layout	UI	components.	

At	the	surface,	the	application	model	editor	provided	by	Eclipse	RCP	seems	easy	
to	use,	but	understanding	the	underlying	semantics can	be	difficult.	Adding	or	
re-arranging	UI	components,	adding	menu	items	and	toolbars,	associating	a	
control	component with	a	class	implementing	the	desired behavior,	and	setting	
up	key	bindings with	this	tool	is	pretty	straightforward.	

The	application	model can	be	edited	through an	Eclipse	interface	but	the	
underlying	.XMI	(similar	to	XML)	file	itself	can	also	be	edited	directly.	Most	of	the	
application	model	can	be	changed	at	runtime	by	the	client	RCP	application.

DECEMBER 2014

USNDC2014-xxxx Page 23 of 36

Figure 12 – Eclipse RCP: Editing the application model (for UI layout)

Figure 13 – Eclipse RCP: XMI representation of the application model (snippet)

3.2.2. SWT / JFace toolkit

The	Eclipse	UI	toolkit	is	built	on	the	Standard	Widget	Toolkit	(SWT) [5] with	the	
JFace [6] toolkit.	SWT	uses	a	Java	Native	Interface	(JNI)	to	windowing	API’s	of	
each	particular	operating	system	it	runs	on.	Due	to	this,	it	tends	to	be	faster	than	

DECEMBER 2014

USNDC2014-xxxx Page 24 of 36

alternative	Java	widget	toolkits	like	Swing/AWT.	It	is	unclear	how	significant	the	
performance	difference	is	between	SWT/JFace	and	Swing/AWT.	

SWT	was	originally	developed	by	IBM	and	is	maintained	by	the	Eclipse	
Foundation	(with	IBM	support).	Eclipse	is	the	largest	and	most	well-known	
product	that	runs	on	SWT;	other	IBM	products	such	as	the	IBM	Rational	
Software	suite	also	use	SWT.	It	is	unclear	whether	IBM	and/or	Eclipse	will	be	
supporting	SWT	indefinitely.	

Pros Cons
Fast	and	responsive,	by	using	JNI	to	
OS	windowing	API

Not	truly	platform-independent;	
requires	libraries	to	run	on	a	given	
platform	

Native	look	and	feel API	somewhat	hard	to	use
Swing	widgets	can	be	embedded	into	
SWT	widgets	(not	vice	versa	
currently)

Few	customization	options;	SWT	
classes	cannot	be	extended	by	clients

Client	code	must	explicitly	dispose		
some	resources	to	avoid	leakage

Figure 14 – Eclipse RCP: SWT Pros and Cons

The	role	of	JFace	is	to	make	some	common	UI	programming	tasks	using	SWT	
easier	and	less	tedious. The	last	stable	release	was	in	July	of	2013,	and	it	is	
developed	and	maintained	by	the	Eclipse	Foundation.	JFace	is	dependent	on	
SWT,	but	SWT	is	not	dependent	on	JFace	– developers	can	use	JFace	if	they	find	it	
convenient,	but	anything	that	can	be	done	in JFace	can	be	done	directly	in	SWT.	
As	such,	the	future	of	JFace	completely	relies	upon	the	success	and	adoption	of	
SWT.

3.2.3. JavaFX / JavaFX 2.0 integration

It	is	possible	to	use	JavaFX	widgets	in	an	Eclipse	RCP	4	application. This	requires	
a	class	provided	as part	of	“e(fx)clipse”	project [7].	This	class,	FXCanvas,	can	take	
a	SWT	Composite object	as	input	and	has	a	method	setScene()	that	takes	a	
JavaFX	scene.	Once	configured,	a	Java	FX	Scene	can	be	added	to	an	Eclipse	4	RCP	
UI	component	as	follows:	

@PostConstruct
void init(Composite parent) {

FXCanvas canvas = new FXCanvas(parent, SWT.None);
final Group rootGroup = new Group();
final Scene scene =

new Scene(rootGroup, 800, 400, Color.THISTLE);
// customize scene as desired
canvas.setScene(scene);

}

Figure 15 – Eclipse RCP: Adding a JavaFX scene to an Eclipse RCP part

DECEMBER 2014

USNDC2014-xxxx Page 25 of 36

The	class	containing	this	method	needs	to	be	associated	with	an	Eclipse	RCP	
part,	which	will	call	this	method	after	being	built,	passing	in	the	SWT	Composite	
object	that	implements	the	part.

3.2.4. Prototype

The Eclipse	RCP prototype	utilized	WavePro,	a Sandia-developed	waveform	
plotting	package,	for	the	waveform	display	and	signal	detection	table	portions of	
the	prototype.	Integrating	WavePro	with	Eclipse	required	minor	modifications	
to	allow	the	wrapper	Eclipse	view	classes	to	grab	the	relevant	items	from	
WavePro.	

WorldWind [8], as	tailored	for	the	Sandia	GeoView	project, was	used	for	the	map	
display	portion	of	the	prototype.	This	required	adding	a	variety	of	dependencies	
to	the	application,	which	was	not	straightforward.	

While	researching	the	best	way	to	utilize	existing	libraries	within	the	Eclipse	
RCP,	it	was	discovered that	code	running	outside	of	the	RCP	application	project	
runs	with	different	Java	class loaders	and	threads [9].	This	leads to	runtime	
problems	if	outside	projects	attempt	to	access	RCP	services. This	aspect	of	the	
Eclipse	RCP	is	not	included	in	the	Eclipse	documentation.	Instead,	the	
prototyping	team	discovered	this	feature	when	the	Eclipse	plugin	for	the	
WavePro	code	could	not	access	Eclipse	RCP	services,	it	could	not	be	updated	via	
dependency	injection,	and	static	Eclipse	4	RCP	methods	are	unavailable.		

Figure 16 – Eclipse RCP: Prototype

DECEMBER 2014

USNDC2014-xxxx Page 26 of 36

3.2.4.1. Communication

The	waveform	display	and	the	signal	detection	table	communicate	using	
dependency	re-injection	and	the	global	Eclipse	context.	If	either	the	waveform	
display	or	the	signal	detection	table	change	the	detections	list	in	the	Eclipse	
context,	this causes	the	waveform	and	table	displays	to	execute	the	necessary	
code	to	update	their	displays	accordingly.	This	is	an	example	of	the	Eclipse	
context	acting	as	a	publish/subscribe	system.

@Inject @Optional
public void pickChangedInArrivalsPanel

(@Named(DIUtility.picksMap) Map<String, Arrival> picksMap)
{

// update waveform displays

Figure 17 – Eclipse RCP: Using the Eclipse context as a listener for data changes

In	the	code	example	above,	the “picksMap”	variable	is	added	to	the	global	Eclipse	
context	when	the	application	starts.	The	Java	Map	stored	there	has	been	updated	
by	a	user	editing an	entry	in	the	Arrival	table.	Upon	that	change,	this	method	is	
called	with	the	new	value	of	the	Map,	allowing	the	waveform	plot	to	update	
accordingly.	The	@Named	annotation	refers	to	the	key	that	the	given	value	was	
associated	with	in	the	Eclipse	context,	and	the	@Inject	annotation	indicates that	
the	arguments	of	this	method	should	be	obtained	through	dependency	injection.
It	is	very	important	to	note	that	a	method	as	above	expecting	to	use	dependency	
injection will	only	work	if	the	class	it	is	located	in	is	directly	associated	with	an	
Eclipse	part	in	the	application	model.

Eclipse	also	offers	a	way	for	methods	to	become	listeners	by	being	annotated	to	
state	that	they	are	listening	for	a	particular	event	String	(a	“UI	topic”),	and	
events	can	be	published	with	a	call	like	IEventBroker.send(“the	topic”). All	
methods	with	the	relevant	UI	topic	annotation	will	be	called.	An	object	can	also	
be	passed	through	this	mechanism	that	can	be	used	by	listening	methods.	This	
event	system	is	really	just	an	alternative	to	dependency	injection.	It	doesn’t	seem	
to	provide	additional	functionality	beyond	that.

3.2.4.2. User Preferences

One	of	the	advantages	of	using	an	RCP	is	the	ability for	users	to	customize the	
layout	of	the	tabbed	workspace	windows	in	the	workspace.	Perspectives	can	be	
created	that	define	the	initial	contents	and	layout	of	a	workspace,	but	Eclipse	is	
set	up	to	remember	user	placement	of	these	windows	when	the	application	is	
closed	and reopened.	Users	can	resize,	nest,	undock,	dock,	and	otherwise	
independently	manipulate	each	of	the parts	within	the	main	application	window.	

Hot	keys	can	be	mapped	to	the	desired	action	through	the	Eclipse	framework.	In	
the	prototype,	the	picking	mode/phase	is	set	either	using	buttons	in	the	toolbar	
of	the	waveforms	view	or	hot	keys,	such	as	“Alt-S”	for	changing	to	S	phase.

DECEMBER 2014

USNDC2014-xxxx Page 27 of 36

The	UI	color	scheme	supports	CSS	for	styling, which	provides	the	flexibility	to	
customize	user	based	on	individual	user	color	preferences.

3.2.5. Evaluation

Internet	opinions	regarding	Eclipse	4	RCP	are	divided:	developers	either	
passionately	advocate	for	the	use	of	the	Eclipse	RCP	for	UI	development	or	
vehemently	warn	developers	to	steer	clear.	Common	complaints	included	a	lack	
of	documentation	and	tutorials	and	opaque	methods	of	obtaining	framework	
objects.	Touted	benefits	of	the	framework	are	the	use	of	dependency	injection	as	
a	way	of	loosening	code	coupling,	cross-platform	capability,	large	community	for	
support	(IBM	and	The	Eclipse	Foundation),	and	a	GUI	for	editing	and	re-
arranging	UI	elements	for	the	application.	The	future	of	Eclipse	4	RCP	seems	
uncertain,	as	it	has	been	out	for	over	4	years	at	the	time	of	this	writing,	but	has	
little	online	documentation	or	evidence	of	a	strong	user	base	(both	of	which	
Eclipse	3.x	did	have). Currently,	the	primary	resource	for	beginning	Eclipse	4	
RCP	developers	is	a	tutorial	by	Lars	Vogel	[10].	

4. CONCLUSIONS

It	was	valuable	to	learn	about	different	web	application	development	
frameworks	and	to	become	more	knowledgeable	about	where	this	area	of	user	
interface	development	is	headed.	While	browser	based	user	interfaces	might	
satisfy	many	of	the	system requirements	(unified	UIF;	consistent,	modern	
interface;	responsive	and	customizable	interface;	use	of	COTS),	some	concerns	
were	highlighted	during	this	prototyping	effort.	One	of	the	UIF	requirements	is	
the	support	of	a	modular,	component-based	architecture;	this	may	be	possible	
using	browser	based	UI	frameworks,	but	it	is	not	something	enforced	by	those	
frameworks.	A	related	concern	is	integration	with	underlying	mechanisms	of	the	
architecture	(e.g.	the	Object	Storage	and	Distribution	mechanism);	these	
browser	based	frameworks	may	not	interface	well	with	the	underlying	
architecture,	and	the	languages	used	for	within	a	browser	based	UI	(e.g.	
JavaScript)	will	not	be	the	same	as	those	chosen	for	the	overall	architecture.	For	
these	reasons,	the	UIF	prototyping	team	concluded	that	an	RCP	solution	better	
meets	Analyst	needs.	

There	are	requirements	related	to	non-Analyst	user	interfaces	(e.g.	system	
monitoring	and	analysis)	that	could	be	met	with a	browser based	display.	In	
cases	where	the	user	benefits	from	viewing	multiple	web	pages	simultaneously,	
a	framework	such	as	OWF	could	provide	a	nice	dashboard	to	facilitate
management	of	those	pages.	

The	Eclipse	RCP	is	a	powerful	tool	that	relieves	developers	of	the	need	to	create	
and	maintain	a	full	suite	of	windows	management	and	user	preferences	code.	
However,	it	is	uncertain	what	level	of	support	will	be	provided	for	the	Eclipse	

DECEMBER 2014

USNDC2014-xxxx Page 28 of 36

RCP,	SWT,	and	JFace	in	the	future,	and	it	is	unclear	how	well	the	upcoming	Java	
UI	toolkits	such	as	JavaFX	will	truly	integrate	with	the	underlying	framework.	

5. PATH FORWARD

Prototyping	results	indicate	NetBeans /	JavaFX	RCP	is	the	most	viable	OSS
candidate	for	the	UIF	and	the	SNL	team	has	selected	it	for	use	in	executable	
architecture	development.		

The	path	forward	for	the	UIF	prototyping	team	includes	more	extensive	
prototyping	of	potential	solutions	for	the	non-Analyst	user	interfaces.	The	non-
Analyst	user	interface	requirements	could	be	met	with	either	NetBeans or	a	
web-based	framework	such	as	the	Ozone	Widget	Framework.	

Even	though	the	frameworks	for	the	executable	architecture	development have	
been	chosen,	surveys	will	still	be	conducted	as	needed	to	evaluate	which	
toolkits,	libraries,	or	embedded	software	packages	will	be	needed.

DECEMBER 2014

USNDC2014-xxxx Page 29 of 36

6. WORKS CITED

[1]	 Sandia	National	Laboratories,	"US	NDC	Modernization	Iteration	E1	Prototyping	Report:	User	

Interface	Framework".

[2]	 "What	is	Highstock?,"	Highcharts,	2014.	[Online].	Available:	

http://www.highcharts.com/products/highstock.

[3]	 "Ozone	Widget	Framework,"	Next	Century	Corporation,	2014.	[Online].	Available:	

http://www.ozoneplatform.org/.

[4]	 "SproutCore,"	SproutCore,	[Online].	Available:	http://sproutcore.com/.

[5]	 "SWT:	The	Standard	Widget	Toolkit,"	The	Eclipse	Foundation,	2014.	[Online].	Available:	

http://www.eclipse.org/swt/.

[6]	 "JFace,"	Wikipedia,	2014.	[Online].	Available:	http://en.wikipedia.org/wiki/JFace.

[7]	 "e(fx)clipse	JavaFX	Tooling	and	Runtime	for	Eclipse	and	OSGi,"	The	Eclipse	Foundation,	

[Online].	Available:	http://www.eclipse.org/efxclipse/index.html.

[8]	 "NASA	World	Wind,"	NASA,	2011.	[Online].	Available:	http://worldwind.arc.nasa.gov/.

[9]	 "Eclipse	- a	tale	of	two	VMs	(and	many	classloaders),"	Eclipse	Zone,	[Online].	Available:	

http://www.eclipsezone.com/articles/eclipse-vms/.

[10]	L.	Vogel,	"Eclipse	4	RCP	- Tutorial,"	Vogella,	2013.	[Online].	Available:	

http://www.vogella.com/tutorials/EclipseRCP/article.html.

DECEMBER 2014

USNDC2014-xxxx Page 30 of 36

7. APPENDIX A. SURVEY OF PLOTTING PACKAGES FOR WAVEFORM DISPLAY

The	following	table	lists	the	plotting	packages	considered	for	the	waveform	display	included	in	the	browser	based	
UI	prototyping.	

Table 1 – Summary of survey of plotting packages

Candidate	Plotting	Solution Description Assessment
Data-Driven	Documents	(D3)
Data-based	document	manipulation
http://d3js.org/

D3	is	a	JavaScript	library	which	facilitates	
integration	with	any	web	page.	It	is	
framework	independent	and	should	work	
with	OWF	and	SproutCore.	D3	claims	to	
have	a	responsive	interface	that	performs	
well	with	large	amounts	of	data	and	
individual	waveforms	can	be	dragged	and	
dropped	within	the	plot	area.	

Prototyping	with	D3	would	allow	the	
team	to	learn	more	about	using	external	
JavaScript	libraries	within	web	
frameworks.	D3	supports	multiple	
waveforms	and	claims	to	have	a	
responsive	interface.	

Prototype?	Yes

Highcharts:	Highstock
Interactive	JavaScript	charts	
http://www.highcharts.com/

Highstock is	a	JavaScript	library	which	
facilitates	integration	with	any	web	page.	It	
is	framework	independent	and	should	
work	with	OWF	and	SproutCore.	Highstock	
supports	annotations	of	plotted	data	which	
can	be	used	to	represent	signal	detections	
along	the	plotted waveforms.	

The	prototyping	team	decided	to	
prototype	this	software	package	since	
Highcharts	seems	to	be	growing	in	
popularity.

Prototype?	Yes

Tableau
http://www.tableausoftware.com/

Tableau’s	mission	is	to	help	users	
understand	their	data.	This	software	
creates	beautiful	plots,	but	it	was	not	
available	for	free.	In	addition,	it	seems	to	be	
a	standalone	application	that	may	not	
integrate	well	with	other	applications.	

Since	Tableau’s	goal	is	to	provide	data	
display	functionality	with	minimal	
customization,	it	did	not	seem	like	a	
good	fit	for	prototyping	efforts	that	
wanted	more	access	to	customization	of	
the	data	displays.	

http://www.tableausoftware.com/
http://www.highcharts.com/
http://d3js.org/

DECEMBER 2014

USNDC2014-xxxx Page 31 of 36

Prototype? Not	now,	perhaps	in	the	
future

Dygraphs
JavaScript	charting	library
http://dygraphs.com/	

Dygraphs	has	many	of	the	same	features	as	
D3	and	Highcharts	but	seems	more	dated	
and	less	modern.	

Because	D3	and	Highcharts	seem	to	have	
all	of	the	features	of	Dygraphs while	
being	under	more	active	development,	
Dygraph	was	not	chosen	for	prototyping.	

Prototype? Not	now,	perhaps	in	the	
future

SoundCloud
https://developers.soundcloud.com/

While	SoundCloud	has	some	plotting	
capabilities	related	to	displaying	music	
files,	it	is	focused	on	building	applications	
for	sharing	audio	across	the	web.	

SoundCloud	is	too	heavily	focused	on	
audio	files	to	be	useful	for	prototyping.	

Prototype? No

WaveSurfer.js
Customizable	waveform	audio	
visualization

Similar	to	SoundCloud,	this	library	is	
tailored	to	displaying	and	manipulating	
music	files.	

Wavesurfer	is	too	heavily	focused	on	
audio	files	to	be	useful	for	prototyping.	

Prototype? No

https://developers.soundcloud.com/
http://dygraphs.com/

DECEMBER 2014

USNDC2014-xxxx Page 32 of 36

8. APPENDIX B. SURVEY OF BROWSER BASED UI FRAMEWORKS

The	following	table	lists	the	browser	based	UI	framework	packages	considered	for	the	browser	based	UI	
prototyping.	

Table 2 - Summary of survey of browser based UI frameworks

Candidate	Framework Description Assessment

Widget	Framework
Ozone	Widget	Framework
http://www.ozoneplatform.org/

OWF	provides	workspaces	for	widgets.	Each	
widget	is	a	web	page,	but	communication	can	
take	place	between	widgets.	

Dashboards or	workspaces	are	layouts	used	to	
arrange	and	display	your	widgets.	

OWF’s	capability	to	provide	independent	
web	pages	encapsulated	in	widgets,	
customizable	desktops	for	the	layout	of	
those	widgets,	and	communication	
among	the	widgets	seems	to	provide	a	
lot	of	the	functionality	needed	in	the	
Analyst	workspace.	

Prototype?	Yes

Plugin
JavaFX	(as	a	browser	plugin)
http://www.oracle.com/technet
work/java/javafx/overview/ind
ex.html

http://docs.oracle.com/javafx/2
/deployment/deployment_toolki
t.htm			

The	Java/Oracle	user	interface	development	
code	base	is	migrating	from	Swing	to	JavaFX.	In	
addition	to	creating	desktop	applications,	
JavaFX	is	a	software	platform	for	creating	and	
delivering	rich	internet	applications	(RIAs)	that	
can	run	across	a	wide	variety of	devices.

It	is	worth	exploring	if	JavaFX	would	
support	an	Analyst	interface	from	either	
a	browser	or	an	RCP.	

Prototype?	Investigate	how	JavaFX	
integrates	with	the	Eclipse	RCP

Web	Application	Framework
SproutCore
http://sproutcore.com/

SproutCore	is	a	framework	for	building	native-
caliber	web	applications and	introduces	its	
own	language	and	syntax	to	support	object-
oriented	programming	that	extends	JavaScript	
objects.	At	runtime,	native	language	files	are	
converted	into	HTML	and	rendered	to	a	web	

SproutCore	offers	a	“workspace	view”	
that	can	contain	multiple	pages	that	the	
user	can	arrange	as	they	wish.	In	
addition,	the	prototyping	team	wanted	
to	become	familiar	with	a	web	
framework	that	offered	more	than	what	

http://sproutcore.com/
http://docs.oracle.com/javafx/2/deployment/deployment_toolkit.htm
http://docs.oracle.com/javafx/2/deployment/deployment_toolkit.htm
http://docs.oracle.com/javafx/2/deployment/deployment_toolkit.htm
http://www.oracle.com/technetwork/java/javafx/overview/index.html
http://www.oracle.com/technetwork/java/javafx/overview/index.html
http://www.oracle.com/technetwork/java/javafx/overview/index.html
http://www.ozoneplatform.org/

DECEMBER 2014

USNDC2014-xxxx Page 33 of 36

page.	

SproutCore	pushes	the	entire	MVC	design	
pattern	into	the	browser,	with	the	only	
separate	component	being	the	data	that	is	
dynamically	loaded	into	the	model	during	
application	runtime.	

is	standard	with	JavaScript	only	pages.	
For	these	reasons,	SproutCore	was	
considered	a	candidate	for	further	
prototyping.

Prototype?	Yes

Ruby	on	Rails	
http://rubyonrails.org/

Open	source	web	application	framework	which	
runs	via	the	Ruby	programming	language.	It	is	
a	full-stack	framework:	it	allows	creating	pages	
and	applications	that	gather	information	from	
the	web	server,	talk	to	or	query	the	database,	
and	render	templates	out of	the	box.	

Ruby	is	a	dynamic,	reflective,	object-oriented,	
general-purpose	programming	language.	It	
supports	multiple	programming	paradigms,	
including	functional,	object-oriented,	and	
imperative.	It	also	has	a	dynamic	type	system	
and	automatic	memory	management.

Ruby	on	Rails	appears	to	be	a	powerful	
web	development	language.	Due	to	time	
constraints,	this	was	not	prototyped.	

Prototype?	No

qooxdoo
http://qooxdoo.org/

Universal	JavaScript	framework	with	a	
coherent	set	of	individual	components	and	a	
powerful	tool	chain.	

With	qooxdoo	you	build	rich,	interactive	
applications,	native-like	apps	for	mobile	
devices,	light-weight	single-page	oriented	web	
applications	or	even	applications	to	run	
outside	the	browser.	

qooxdoo	appears	to	be	a	powerful	web	
development	framework.	Due	to	time	
constraints,	and	the	fact	that	this	
JavaScript	only,	this	was	not	prototyped.	

Prototype?	No

Ember.js
http://emberjs.com/

Ember.js	evolved	out	of	SproutCore and	is	
described	as	"a	JavaScript	framework	for	
creating	ambitious	web	applications	that	
eliminates	boilerplate	and	provides a standard	

Because	Ember.js	developed	out	of	
SproutCore,	and	the	decision	had	
already	been	made	to	prototype	
SproutCore,	the	team	decided	not	to	

http://emberjs.com/
http://qooxdoo.org/
http://rubyonrails.org/

DECEMBER 2014

USNDC2014-xxxx Page 34 of 36

application	architecture."	It	comes	tightly	
integrated	with	a	templating	engine	known	as	
Handlebars,	which	gives	Ember	one	of	its	most	
powerful	features:	two-way	data-binding.

JavaScript	is	a	flexible	and	powerful	language	
but	it	also	has	its	shortcomings.	Out	of	the	box	
it	doesn't	offer	the	sort	of	functionality	that	
lends	itself	to	MVC	style	development.	So	
Ember	has	extended	the	base.

prototype	Ember.js	this	iteration.	It	
appears	to	be	a	powerful	web	
application	framework	that	adds	to	the	
capabilities	provided	by	JavaScript	and	
SproutCore.	

Prototype?	No

WebUI	Framework	/	Toolkit
Sencha
http://www.sencha.com

Sencha	Ext	JS
http://www.sencha.com/produc
ts/extjs/

Sencha	GXT
http://www.sencha/com/produ
cts/gxt

Sencha is	an	open	source	web	application	
framework	that	creates	development	
frameworks	and	tools	that	help	design,	
develop,	and	deploy	applications	for	desktops	
and	mobile	devices.	

Sencha	Ext	JS	is	a	JavaScript	Framework	for	
Rich	Desktop	Apps	and	provides	a	desktop	
application	development	platform

Sencha	GXT	is	an	Application	Framework	for	
Google	Web	Toolkit.	It	uses	the	Google	Web	
Toolkit	compiler	so	developers can	write	
applications	in	Java	and	compile	code	into	
highly	optimized	cross-browser	HTML5	and	
JavaScript.	

The	fee	for	Sencha	licenses	seemed	too	
high	for	an	exploratory	prototyping	
effort.	However,	should	the	US	NDC	
decide	to	invest	heavily	in	browser	
based	user	interfaces,	Sencha	is	a	
framework	that	definitely	merits	further	
investigation.	It	provides	many	different	
toolkits	and	supports	a	wide	range	of	
applications,	including	“desktop	like”	
web	applications.	

Prototype?	No

Cappuccino
http://www.cappuccino-
project.org/

Open	source	framework	that	makes	it	easy	to	
build	desktop-caliber	applications	that	run	in	a	
web	browser.	Uses	Objective-J,	which	is	
modelled	after	Objective-C	and	built	entirely	on	
top	of	JavaScript.	

Due	to	time	constraints	and	the	
requirement	to	learn	a	new	
programming	language	(Objective-J),	
this	framework	was	not	chosen	for	
prototyping.	

Prototype? No

http://www.cappuccino-project.org/
http://www.cappuccino-project.org/
http://www.sencha/com/products/gxt
http://www.sencha/com/products/gxt
http://www.sencha.com/products/extjs/
http://www.sencha.com/products/extjs/
http://www.sencha.com/

DECEMBER 2014

USNDC2014-xxxx Page 35 of 36

Portal	/	Portlet
Liferay
https://www.liferay.com/	

Provides	a	unified	web	interface	for	data,	tools,	
and	system	integrations	scattered	across	a	
large	number	of	resources	and	devices.	Within	
the	portal,	the	portal	web	page	interface	is	
composed	of	a	number	of	Portlets.	These	
portlets	are	self-contained	interactive	elements	
written	to	a	particular	standard,	such	as	JSR	
168	or	JSR	286.	As	portlets	are	built	
independent	of	the	portal	and	are	loosely	
coupled	with	the	portal,	they	are	apparently	
built	using	SOA.

Liferay	is	more	than	just	a	user	interface
framework;	it	includes	the	entire	
underlying	SOA	architecture.	Because	
this	prototyping	effort	was	focused	on	
the	user	interface	framework	while	
other	prototyping	efforts	were	focused	
on	the	underlying	system	services,	
Liferay	was	not	a	good	fit	for	the	UIF	
prototyping.	

Prototype?	No

DECEMBER 2014

Page 36 of 36

This	is	the	last	page	of	the	document.

